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Abstract

If the Hamiltonian for the motion of & charged particle in
a magnetic Tield has one or more cyclic coordinates it may
often be viewed as representing the motion of a particle sub-
Ject to a potential V . The use of V provides gualitative
insight about the motion even in some cases where a solution
of the motion cannct be obtained. Several examples using

this concept are reviewed and discussed.



TLRODUCTION

There exist two types.of classical particle moticn which are
relatively easy to handle in Hamiltonian form. One is the motion
in a potential field, where the structure of the potential functicn
not only gives the form of the Hamiltonian but also provides quali-
tative information aboub the resulting motion, and the other is the
motion of a charged particle in a magnetic field. The purpose of
this work is %to review examples in which motions of the second type

can be reduced to the First type, with varicus related benelfits.

Perhaps the best known example of such a reduction is the work
of Carl Stérmer (l)(z), performed around the turn of the century
and dealing with the motion of a charged particle in a magnetic
dipole field. IT p is the dipole moment generaving this Tield,
an appropriate vector potential Is

- P

A = pr 5in® "f (1)

where (r,6 ,¥) are spherical coordinates with @ measured from
A

the dipole mxis and where ¥ is a unit vector in the “# -direction.

¥or time-independent Tields,a Hamiltonian Tor a particle of mass m

(2)

(=7 my, where m, is the rest mass) and charge q 15 then

B = (1/em) [pi #.r 0+ (rsin@) (R, - sineﬁ/r)e] 2)

There exist two constants of motion - the total energy E and |
also the component py of the canonical momentum, since H does
not contain explicit dependence on ¥ . These two constants,
hewever, are not sufficient to provide en analytical solution for
the motion and in fact, such a solubion in general cannot be found.
stdrmer's great contribution was in noticing that the constancy of
Py reduces the Hamiltonian to that of motion in a 2-dimensional

potential

A = (1/2m)(pi+ r-gpg) + Vi(r, 030, ) (3)



where

Vir,8;p, ) = (pq - qu sinee/})g/ém r2 singe (4)

The structure of V in the (r,® ) plane - comveniently repre-
sented by contours of constant V -~ will determine the nature of
the motion., From its algebrasic Torm, V 1is clearly non-negative ;
furthermore, if py and qu have opposite signs, V does not
vanigh at any finite distance from the origin. On the other hand,

if the signs are identicasl, then V alsc vanishes along the line
. 2
r=z qusin®/ D, (53

which represents a field lire of the dipole field if ¥ is held

constant .

In sdditicn, V in all cases tends tc zero as r-=+9e , In
the case wher:s V vanishes on the Tield line (5) , that field line
must be geparated from Infinity by & region in which V has Tinite
values, and it therefore represents a localized "potemtial hole" .
IT the particles in question have sufficiently low energy, they will

be trapped in this hole and can never reach infinity.

Thus, by gqualliatlive arguments based on the concept of the
potential, Stérmer deduced the existence of trapped orbits in the
dipole Tield. Be actually went further and derived the ranges in
energy and in arrival direction at various points on earth for
which any arriving particles would have to be trapped. Stdrmer's
aim, by the way, was the study not of trapped orbits but of corbits
arriving from infinity. Specifically, he wanted to trace the motion
of particles responsible for the polar aurora, which he believed
to originate on the sun, end his theoryﬁed to a result which queli -
tabively seemed to agree with cbservations, namely that if such
particles had relatively lov encrgies they could arrive only near
the megnetic poles of the earth. Near the geomagnetic equator, he
showed (assuming the earth's field %o be = diﬁgle fieldL all low-

vare movin
energy particles reaching the surface ¥ trapped orbits,



Later investigations showed St8rmer's explanation of the aurora
to be incorrect, but his theory fits very well the dhserved arrival
of low-energy cosmic ray particles. Satellite chservations since
1658 have alsc shown that trapped orbits above the earth's atmos-
phere contain a large particle population, constituting the well-

known radiation belt.

Stdrmer's results are easily(extended to axisymmetrical poloidal
fields, of which potential fields 3) are & special subclass, as
are magnetic mirror configurations. Let the magnetic field be given

by Euler potentials 4 as

B = 9Ul(r,8) x V¥ (&)
Then E agsin reduces to the form (3) , with V given by

¥ = (p\f - qob )2/2 m r° sin"® (7)

This shows that with & proper sign of py , a "guiding field line"

exists on which

& = Pv/q

On that line V vanishes and around it particles may he trapped.
For further analysis of particle motion in a dipole field the reader
is referred to the very thorough work of Dragt (2); both there ang
in the work of Stlrmer 1) contours of V in the (r,® ) plene
are showny normalized in such a way that one set of contours gerves

for =1l energies,.



ONE - DIMENSIONAL POTENTIALS

The preceding example concerns a case where qualitative insight is
obtained sbout a particle's motion in a magnetic Tield, even though a
complete solution of the motion is not obtainable, by converting it
to motion in a potential, in two dimensions. If the problem can be

reduced to motion in a one dimensional potentiasl, a sclution is generally

possible, although its explicit derivation may be complicsted. The

value of introducing a potential V in such cases is that it allows one
to come to qualitative conclusions by quick inspection - and in particular,
it allows the deduction of pericdic character of the solution, which lesads

one at once to look for adishatic invariants of the metion,

As an example, consider the motion of a particle near a neutral

(5)

gheet, investigated by Sonnerup , in a magnetic field B which main-
tains a constant direction but with a magnitude varying linearly with

distance along an axis perpendicular to B . In cartesian ccordinates
P
B = 3B, (x/L) ¥ (8)

where L 1s a scaling distance and where B vanishes and reverses its

direction at the plane = = 0 .An appropriate vector potential is then

A = - KF By/ 2L) 2 (9)
from which

no- em [Rrfe g0 o] Qo)
where

T = By 2L



Clearly py and pZ are constants of the motion. The y-component of
the motion may be completely separated’ and will therefore be omitted here,

leaving

jos}
If

rjen + V(x, 7)) (11)

where

<
I

(pz + U’XE)JVEm (12)

This may be completely solved in terms of =lliptic integrals (as Sonnerup
has done), put quick insight may be gained by merely examining the form of
V . Ae before, V is non-negative, but in this case it tends to infinity
as ¥ -+ k@ , showing that V represents a potential well and that the

motion ig therefore always periodic.

If P, snd & have opposing signs, V vanishes at two points, namely
at

x =2 |pj/al 12

These will be minimum pointe of the curve of V against x - the only
ones, it turns out - and that curve will resenble the one shown in
Figure {(1-a) . If Tp, >0 , only one minimum point exists

and it is located at x = O , as shown in Figure (1-b) .

In the first case, a mode of motion exists in which particles remain
confined to one side of the neutral plane {i.2. the plane x =0 , on
vhich B vanishes ). Such particles oscillate back and forth in one of
the "side pockets™ of Figure(l-a) in a mode of motion resembling the
well-known guiding center motion (Figure 2-a) . In additicn, both forms
of V admit solutions which cross the plane x = 0 . The difference
will be that in the second case (Figure 1-b) the z component of the

velocity



v o= (o + @)/ (13)

maintains a constant sign, while in the first case (Vv as in Fig. 1-a)
v, Teverses sign at the points at which V = O . Thus in the second
case the particle's advance in the z~direction 1s continucus, as shown
in Figure (2-b) , while in the first case the particle's motion in

that direction includes occasional retrograde motion, as shown in Figure
(2-c)

GENERALIZATIONS AND ADIABATIC INVARTIANTS

A more geners) form which includes (8) as a special case is

Such a field can be handled in much the same fashion, with the vector

potential

A = Alx)Z ‘ . (15)

being derived by indefinite integration from

Alx) = - jBO(x)dx (16)

The best-known case of this type is that of a constant field BO'§ s
in which case A = BO ¥ and (12) is replaced by

v o= (o + qBOX)E/Qm (17)

Regardless of the sign of b, > V always has the profile of & parsbolic
well and the Hamiltonian reduces to that of a harmonic oscillastor. This, of
course, gives the well-known guiding center motion of a particle in a

unitorm field,



The guiding center motion and the mot%o?(aﬁ?cﬁs a neutral plane are both
' 6)(7)(8

periodic. Classical mechenics then shows that the so-called

action integrals derived Tor such motlions

g = jgpxdx (18)

(integration over one period) remain adisbatically invariant in the presence
of slow perturbations. For)the constant field BO ? , the result is the

familiar magnetic moment 9 , vhile for the motion in the field (8) a more

complicated invarisnt has been @erived by Sonnerup.

/
If a curl-free electric Tield -‘V¢ is added, the solubtion may

+o g motion in a potentials in particulsr, if ¢
depends only on X , the Hamiltonizn still has the form (11) and
only the function V appearing there is modified. If ¢= ¢ (x, y)
+he potential becomes two-dimensional, while if dependence on z 1s
also allowed, P, is no longer ceonstant and all the adventage of

introducing V- is lost.

An exception to this is a constant electric fizld E , for which

-¢ = XE_+ ¥ Ey + z B/ (19)

In that case, the motion in y still separates, and if the magnetic
field is constant, the problem masy still be reduced to motion in a
one-dimensional potential, To do sc one empleoys a cenonical transformation
to new varisbles (Pi, Qi) , inmtroduced by dardner(lo); if B is given &as

A
BO y , the generating function of the transformation is

- - 20
F(p, r) = BP x + B,y + Py PlPa/q (20)

A Tew additional steps reduce H to a form similar to that derived for a
constant field, but the only net result is the addition of the guiding

center drift due to E .



TWO - DIMENSIONAL FIELDS

Consider the general class of fields independent of =z and lacking

8 gz-component

B = %B,G,y) ¢ 7B ) (21)

‘(Bx and By must be related by zero-divergence condition). Such Tields

can be expressed in terms of Euler potentials
B = V™(x, y)x ¥z (22)
where ® is the indefinite integral

ol (x, y) = - jBy(X’ y) ax ¥ Bl(y) (23)

and where Bl is adjusted to satisfy

/oy = B ¥)

A Tield line of this field is then characterized by the constancy of

ol {x, y) and of 2z, and the Hamiltonien is
2 2
H = (l/2m)[13X t oo, ] + vip,, %, ¥) (2k)
where pZ is a constant of the motion and

z
v = [pz - qel{x, y)] /2m (25)
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The motion thus reduces to a two-dimensional molion in a non-negative

potential in which 211 equipotentiale follow magnetic Field lines, with

the third coordinaté arbitrary and constant.

magnetic . .
As an example, conside the X-typepnull line {or neutral line - a line

along which B vanishes) obtained by adding an extra term to equation (8)

B = B /LT + Bg(y/mg (26)

The appropriate Euler potential will satisfy

;. \ 2
g Llx, y) = T ¥ - & (27)
2 1
vhere G‘i = q Bi/2L o The Tield lines are a Tamily of hyperbolas

sharing the same asymptotes (Figure 3} and the Hamiltonian is

2
EH = {(1/em) [ng + py.2 + (9, - G'2y2+ Crlxe)] (28}

A1} eguipotential lines are thus field lines (and vice versa) but unless
B, is given, one cannot determine which of these lines represent high
values of V and which ones represent low values. For any given P, »

there will exist two conjugate hyperbolas on which V vanlshes

and these represent the bottoms of two valleys, separated by a pass at
the origin. A particle starting Ifrom one of the valleys (broken line
in Figure 3) needs a certain minimum of energy to climb out of it and

to cross the pass. However, even when the energy exceeds this minimum,
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the particle might fail to cross the pass: whether it gucceads in doing

so depends on the exact initial conditions. The motion may be investigated
1

qualitatively and numerically( ) but & complete analytical sclution is

not availakhle.

Other two-dimensional Tields with some practical interest are those
which can serve ag models for the central portion of the earth*s
"magnetic tail" ; such fields differ from the one in equation (8) by

small zdditional terms. For instance

B = ByxL)T + B, X (30)

has parabolical field lines and represents one such model, with By
accounting for the average northward megnetic flux cbserved in the
geomagnetic tail, due to the magnetic polarity of the earth's main
field. This Field has the interesting property that first order guiding

center drifts in it (curveture and gradient) cancel identically
when averaged over a single longitudonsl excursion of the particle.

(13)

Another model contains a string of aliernabting ZX-type and
such behavior
O-type null lines andhpay be represented by

B = Byxm§ + B

1_2 sin ey (31)

Both these Tields can be handled in the same way as the field of
figure {3), but details are left to the reader.

BOUNDARY TFIELDS

Grad(lh) investigeted the transition between & field-free plasma and
s plasma-free uniform magnetic field. The magnetic field in his example

was

B = B2z (32)
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with B(x) # 0 Tor any finite x and with

Bloo ) ~» B, = const.

B(-o00 )} — 0

The plasma density was assumed to depend only en x , tending to a

constant limit ag X —-» - and to zero as X% od

The vector potembial for (32} can be written as
A = alx) Q (33)

with A(x) derived by integration

Alx) = mfﬁ B(x') ax' (34)

T o~ CWD
Because B # 0, the sign of B (assumed to be positive) never changes ,
making A{x) monotonically increasing. The Hamiltonian of the motion in

the (x, y) plene (the z-component of the motion may be separated) is then
2 2
H = (1/2m) [px + (py ~ q A{x) )-] (35)

and has a Fform similar to that of (11), since p}r is conserved. The

potential V now has the form

(®, - a4 ) fom (33)

<}
I

and the qualitative analysis resembles that of (11). If B, and gh
have the same algebraic sign, then V increases monctonically with x ,
s0 that any particle for which this is true will penetrate to a maximal
Yalue of x and then roll back all the way to -oe .
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If the signs differ, there will exist for the given value of BY an
absclute minimum of V at which V vanishes, and particles of sgufficl-
ently low energy will be trapped in the vicinity of that minimom. In
conventional terms, orbits extending to x = - ©9 correspond to parti-
cles arriving at the boundary of the magnetic field from the fisld~Iree
region and being reflected at that boundary, while trappe#brbits repre-
sent guiding center motion inside the region of appreciable magnetic

field.

The Hamiltonian formulation is especially useful in this case
hecause - through the Licuville equation - it leads directly to the
Vlasov equation for a plasma located in the given magnetic Tield, and
this has been investigated by varicus workers 5 » The method may be

extended to fields having the form
B = B(x) ¥y + B,x2 (37)

The vector potential can then be viewed as the sum of vector
potentials derived sepgrately for each component, the derivation in

each case Tollowing the ome given in equations {33) - (3&). Writing

A = AT + A2 (38)

one can derive the components by integrating the relations

ah /ax = B, as,/ix = - B (39)

The Hamiltonian is still that of motion along the  ®x axis with a poten-

tial V , but now

2
voe o [, aa ) )Tt o, an) 7] /e (o)

and both Py and p, are constants of the motion. Again, thgﬂ{ransi—

tion to treatment of the Vlasov equation is straightforward: the general
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solution of that eguation will be a function of the constants of motion

(ps P> E) and must be constructed in a way which makes the density of
F

electric charge and current agree with the postulated fields and avoids

negative particle densities.

The important case where B represents a monotonic transition
between two constent fields has been analyzed by Alpers (lé)o Such a
transition may serve as a good model for the magnetopause - the sharp
4ransition cbserved between the geomsgnetic field and the interplanetary
plasma - and alsc for "tangential discontinuities” observed by spacecraft
in interplanetary space(lT . In the former case an electric field - v ix)
probably exists at least on one side of the boundary, due to tangential

flow of the plasma there, and this adds one extra term to (}0) .

¥or large values of X , in these examples, the field tends to

constant values and by (39) , in this limit

A (x) —» A ¥ x B

¥ AR zl
_ (41}
- B
Az(x) - Azl % ¥l
A similar limit exists ag X - =-o@ , with index 2 replacing index 1 .

In both cases, because of the factor =x , the contributions of A fto V
will be relatively large. Of course, the values of py and P, could be
of comparable magnitude, causing V to have its minimum at some large value

Y

of % and leading to guiding center motion in the vicinity of that x .
For most values of p_  and pz , however, when =x is large the terms
proportional to it in (ﬁ%%ﬁ%gpinate ¥ and cause "potential walls"
to rise parabolically as x -» * e ; leaving between them a "valley"
with a floor which may be quite irregular. Particles of sufficient
energy will bounce back snd forth between such walls, thus crossing and
recrossing the boundary region in a manner somewhat similar tco that of

particles near Sonnerup's neutral sheet {note however that here the motion
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1s not confined to a single plane). Such particles trapped in
the vicinity of the magnetopause seem to be responsible for the current

density required to maintain it.

Another example of a field having a form for which the motion of =
Particle is readily reduced to motion in a potential V is the rotating
Tield

B = B{ i sin Ax + 2 cos Ax ) (4o}

The details are left to the reader. The motion of charged particles
can also be solved in a somewhat more general Tield which in addition
to (42) aleo conteins a constant megnetic field in the x direction
and that case, too, reduces to motion in a one-~dimensional rotential,
but the potential is in velocity space and its derivation is not as
straightforward as in the examples given here, Details may be found in

the work of Lutomirski and Sudan(l8 .

CONCLUSIONS

The preceding examples show that if the Hamiltcniasn for = charged
particle in & magnetic field contains one or two cyclic veriables, it can
often be cast in a form representing motion in & one-dimensional or a
two-dimensional potential V . The structure of V +then often provides
qualitative insight into the range of motions which can exigt. IF the
nmotlon reduces to a one-dimensional case, the existence of potential
wells suggests periodicity, allowing adiabatic invariants to be deduced.
In two-dimensional motions the derivation of complete solutions may
prove impossible but qualitative conclusions might still be deduced from

V , 8s in St8rmer's calculation.

An interesting - and unanswered - question is how valid are the

qualitative properties deduced from V when the strict conditions which



allow it to be introduced (ususlly some symmetry) are relaxed. In the
one-dimensional case, adiabatic invarilants deduced from V are expected
o be approximately preserved even in the presence of perturbations. The
derivation of adisbatic invariants, however, rests on classical pertur-
bation theory and regquires the availebility of the solution for thé
unperturbed motion, In two-dimensional cases - like St8rmer's theory -
such a solution is not available, and it is not clear how the qualitative
theory can be extended to perturbed cases. Ubservations suggest that
cosmic ray particles in the geomagnetic field conform quite well to
strmer'e theory, in spite of an appreciable asymmetry of the ield: this
suggests that an extension of that theory might well exist, although

nore is known at the present time.
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CAPTTONS TO FIGURES

Figure 1 ~ Potential wells for the motion of a particle in a magnetic
field B,(x/L)§ .

Figure 2 - Possible modes of motion for a particle in a magnetic field
A
B (x/L) Yy .
o]
Flgure 3 =~ Potential contours for the motion of g particle near a

magnetic null line.
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Figure 1-b
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Figure 2-c
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